



# Agreement between Rebound and Applanation Tonometry in Children

Presented by
Amanne F Esmael, MD, IBCT

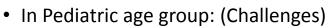
No Financial Interests to declare

# European Journal of Ophthalmology

Agreement profiles for rebound and applanation tonometry in normal and glaucomatous children

Amanne Esmael, Yomna M Ismail, Abdelrahman M Elhusseiny, Alaa E Fayed, Hala M Elhilali Show less ^

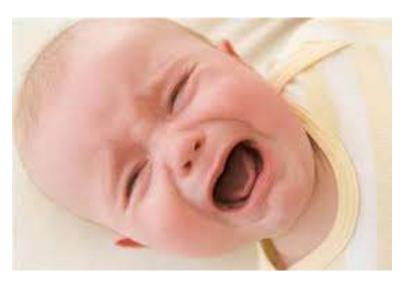
First Published September 4, 2018 Article


Research

(R) Check for updates

https://doi.org/10.1177/1120672118795060

### **IOP** measurement


- Goldmann applanation
  - Gold standard
  - Perkins





But

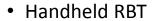




Sitting at the Slit lamp?



### Cooperation????




In office Sedation?

#### In theatre General anesthesia? (type/stage)



### Advantages of I-Care



- Fine sensor tip (less than 2 mm in diameter)
- Fast: Measurements are taken within 0.1 s.
- The force is minimal → No blink reflex.
- No topical anesthesia is required.
- Awake

#### So what do we have?

#### A Gold standard

Challenges

#### New promising tool

Needs validation



**PAT** 



**I-Care TA01** 

#### **Purpose**

- To detect the degree of agreement between IOP measurements by RBT and PAT in children with and without PCG
- Test devices' agreement with varying age and IOP
- Investigate whether there is an IOP limit, above which the degree of agreement changes.

#### Methods

- A prospective non-interventional comparative study (Jan-June 2017)
- 223 eyes of 115 children(<16 years)</li>
  - 161 normal eyes
  - 62 PCG eyes.
- Excluded patients:
  - 2ry glaucoma, corneal edema, uncooperative

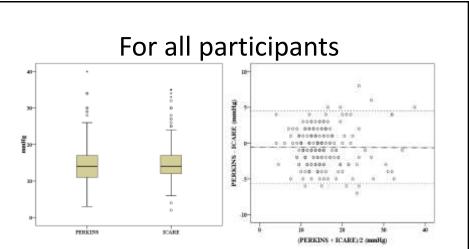
#### Methods

- IOP measured in upright position
  - First by I-Care (TA01)
  - then topical anesthetic (Benox ® eye drops )
  - then by Perkins applanation tonometer.

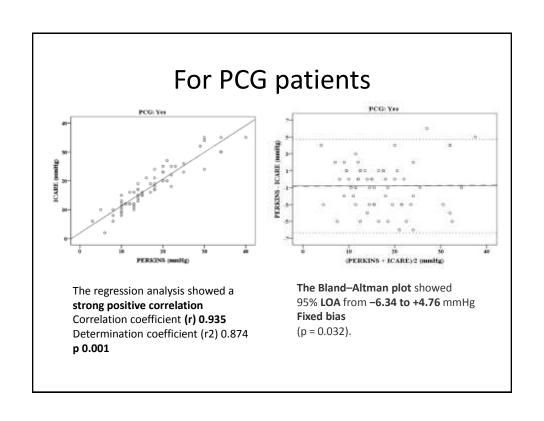


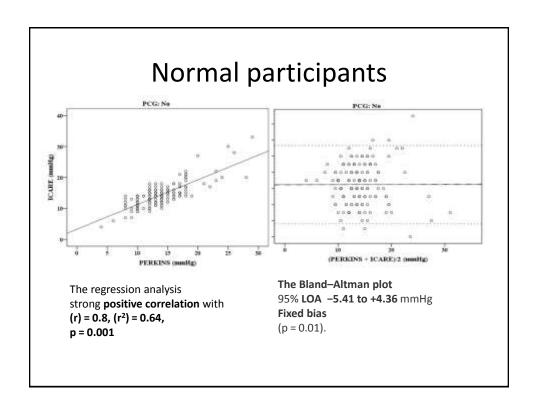


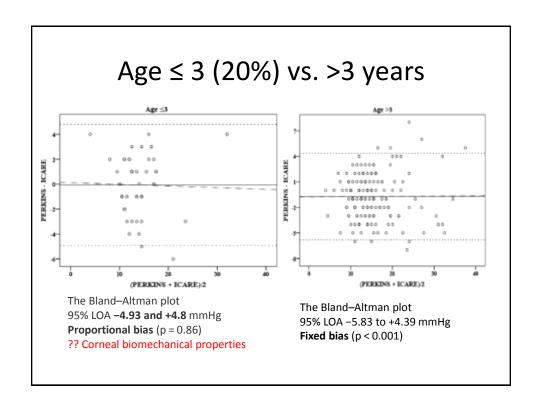


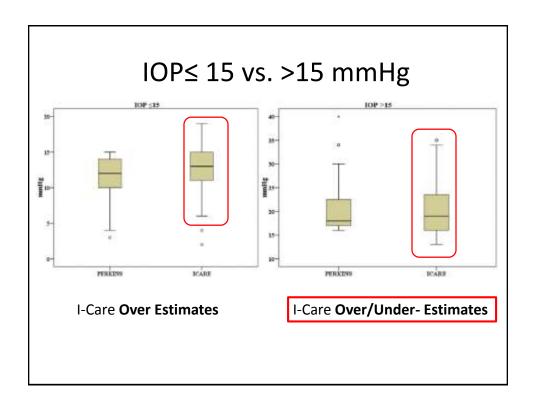

9 cases required sedation (chloral hydrate) for measuring with PAT

### **Statistics**


- Groups
  - Normal and PCG
  - -≤3 years and >3 years
  - IOP ≤ 15 mmHg and those > 15 mmHg
- The Bland-Altman plot was used to compare the bias, and 95% LOA between I-Care and PAT in each group.


#### Results


|         |           | Normal        |            | PCG   |           |            | p value                       |
|---------|-----------|---------------|------------|-------|-----------|------------|-------------------------------|
| Age (y) |           | 6.3 (4mo-14y) | )          | 7 (8m | o-16y)    |            | 0.205                         |
|         |           |               |            |       |           |            |                               |
|         | PAT       | I-Care        | Difference |       | p-value   | Regression |                               |
| IOP all | 14.6± 5.5 | 15.2± 5.5     | -0.59      | ± 2.6 | p = 0.001 |            | 0.9 and $r^2 = 0.79$ < 0.001) |




- Bland–Altman plot between average and mean difference in IOP by both devices.
- The thin solid line is the mean of difference  $(-0.59 \pm 2.6)$
- The dashed line is the 95% LOA -5.67 and +4.49 mmHg
- Fixed bias (p = 0.001)
- Dash dotted line is the regression line (r = 0.9 and  $r^2 = 0.79$  (p < 0.001)









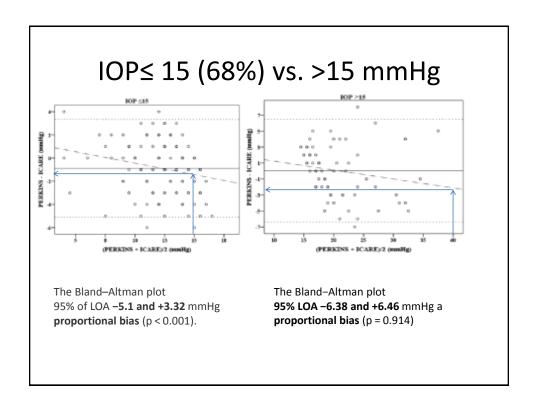



Table 1. Bias and 95% LOA in all groups.

| Group         | Bias (mmHg) | SD   | 95% LOA         |  |
|---------------|-------------|------|-----------------|--|
| All           | -0.59       | 2.59 | -5.67 to +4.48  |  |
| PCG           | -0.79       | 2.83 | -6.34 to +4.76  |  |
| Healthy       | -0.52       | 2.5  | -5.41 to +4.36  |  |
| IOP≤ I5 mmHg  | -0.89       | 2.15 | -5.1 to $+3.32$ |  |
| IOP > 15 mmHg | 0.04        | 3.28 | -6.38 to +6.46  |  |
| Age≤3 years   | -0.07       | 2.48 | -4.93 to +4.8   |  |
| Age > 3 years | -0.72       | 2.61 | -5.83 to +4.39  |  |

SD: standard deviation; PCG: primary congenital glaucoma; IOP: intraocular pressure; LOA: limits of agreement.

#### Discussion

- Before our study......
- Large-scale studies to compare the two tonometers in patients with PCG are lacking due to relative rarity of the condition.
- Many previous study results have been complicated by the use of a general anesthetic, which can alter the IOP.
- Previous studies have not included children younger than 3 years.

- Our results show that the LOA between both devices decreases with higher IOP measurements
- A similar report by Dahlmann-Noor (2013)
  - Compared GAT to RBT in 102 subjects with glaucoma (mean age 11 years),
  - I-care Pro gave higher readings than GAT.
  - The magnitude of disagreement increased with IOP
  - the LOA went from (-8.6, 3.9) in IOP < 21 mmHg to (-21.08, 10.04) in IOP > 21 mmHg.
- · Our results may not be as profound, while
  - The majority of our cases had an IOP <15 mmHg (68%)
  - Only 38.5% (62) of eyes were glaucomatous
  - TA01 model

#### In answer of our research questions:

- To detect the degree of agreement between IOP measurements by RBT and PAT in children with and without PCG
- Test devices' agreement with varying age and IOP
- Investigate whether there is an IOP limit, above which the degree of agreement changes.

#### Conclusion

- There is a good correlation between RBT (I-Care) and PAT in children with and without PCG.
- RBT overestimates IOP (usually)
- In IOPs >15 mmHg there is less agreement between the two devices.

#### Recommendations

- RBT is a good screening tool:
  - It tends to overestimate the IOP (not under diagnose glaucoma).
  - Less intimidating (no topical anesthesia/ sedation required)
  - Easier to use especially in infants with small palpebral fissures
- It is a suitable **follow-up** method
  - Detect IOP changes in glaucoma patients
- If IOP ++ → PERKINS (diagnosing/initiating treatment).
- An assessment involving corneal biomechanics may add further understanding and explanation for age variations

#### References

- Sator-Katzenschlager, S, Deusch, E, Dolezal, S. Sevoflurane and propofol decrease intraocular pressure equally during non-ophthalmic surgery and recovery. Br J Anaesth2002; 89(5): 764–766
- Dahlmann-Noor, AH, Puertas, R, Tabasa-Lim, S. Comparison of handheld rebound tonometry with Goldmann applanation tonometry in children with glaucoma: a cohort study. BMJ Open 2013; 3(4)
- Rodrigues, IA, Chan, WH. A comparison of the Icare Pro rebound tonometer with applanation tonometry in healthy infants. Adv Ophthalmol Vis Syst 2014; 1(3): 1–5.

## Thank You

Amanne.Esmael@kasralainy.edu.eg