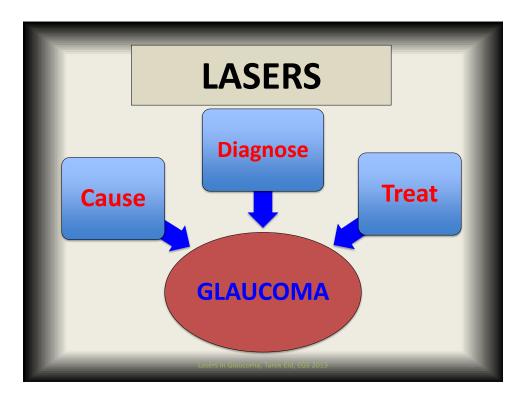
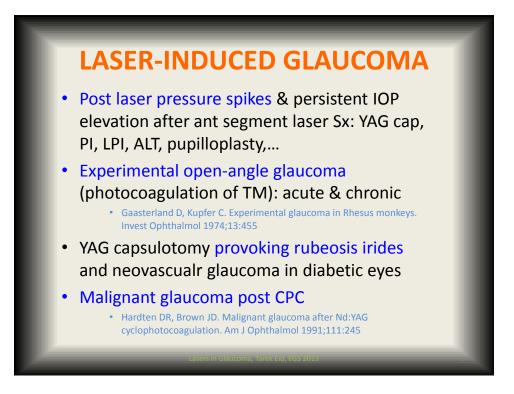
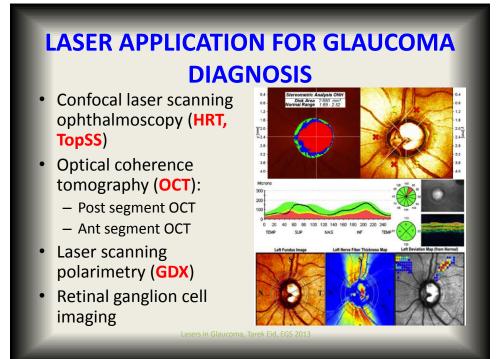
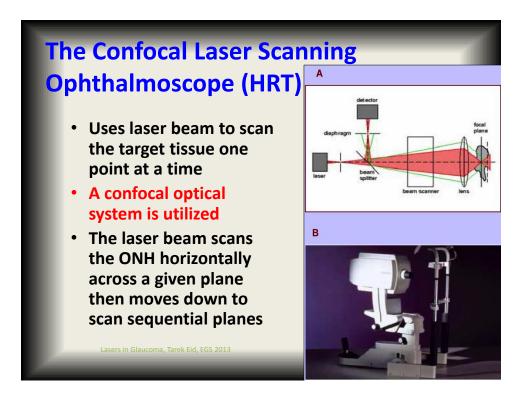
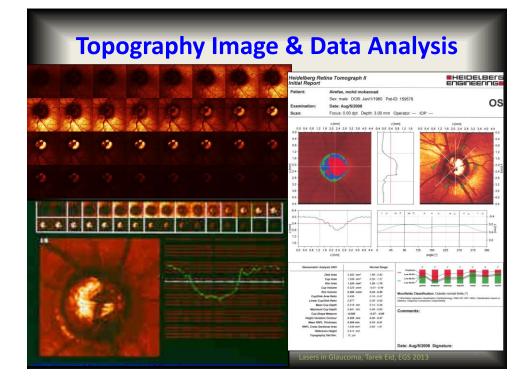

LASERS IN GLAUCOMA MANAGEMENT

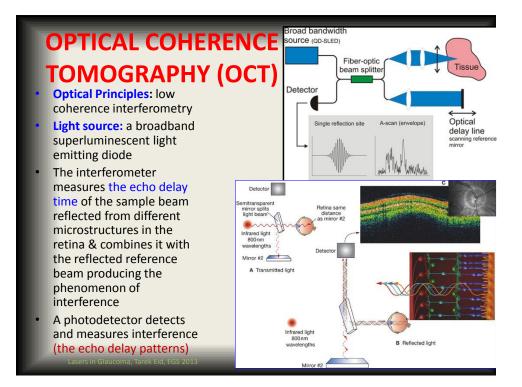

TAREK M. EID, MD

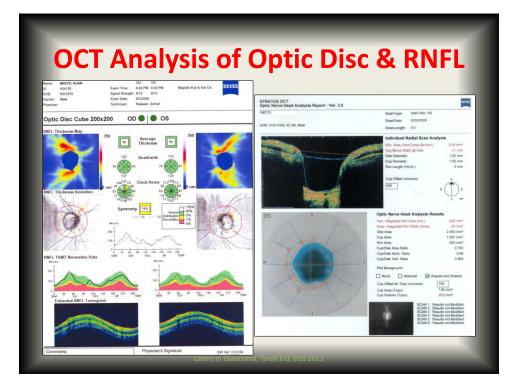

PROFESSOR OF OPHTHALMOLOGY, TANTA UNIVERSITY CONSULTANT, GLAUCOMA & CATARACT UNIT MAGRABI HOSPITALS & CENTERS

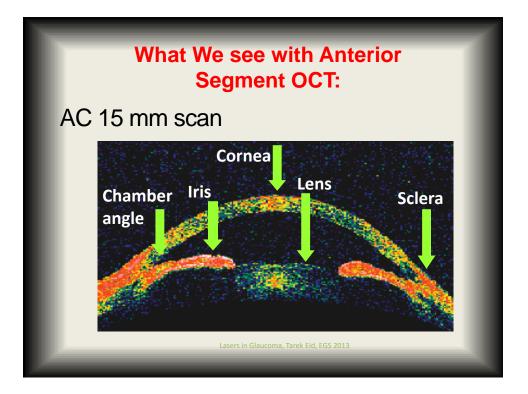


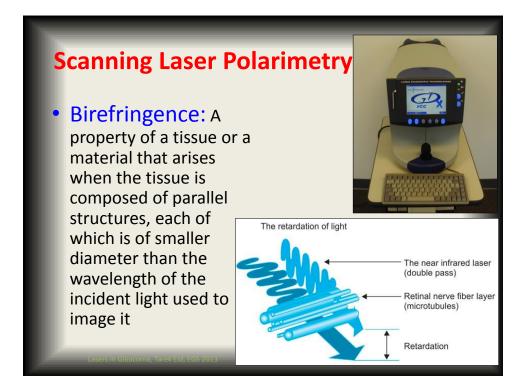

Specific LASERS & Tissue Interactions

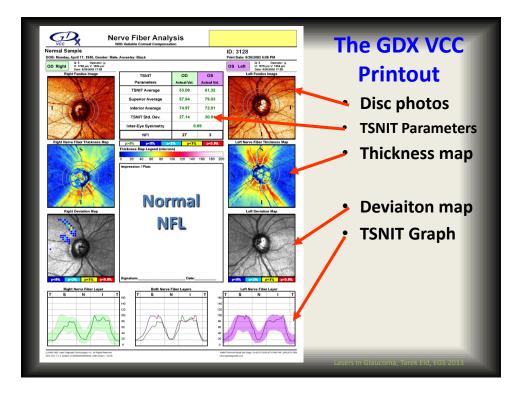

 Argon laser S14-488 (blue & green light) Photocoagulation Nd:YAG laser (pulsed) 1064 (near infrared) Photodisruption Nd:YAG, freq. doubled S32-nm Photocoagulation Diode laser 800-820-nm (infrared) Photocoagulation Carbon Dioxide 10600 (far infrared) Photovaporization Femto second laser Motocoagulation Krypton laser Excimer laser Ruby laser 694-nm (visible spectrum) 	•	Type of Laser	Wavelength	Effect on tissue
 Nd:YAG, freq. doubled Diode laser Carbon Dioxide Femto second laser Krypton laser Excimer laser 193 (far ultraviolet) 	· '	Argon laser	514-488 (blue & green light)	Photocoagulation
 Diode laser Boo-820-nm (infrared) Carbon Dioxide Carbon Dioxide Femto second laser Krypton laser Formal Structure Fexcimer laser March 103 (far ultraviolet) Photocoagulation Photocoagulation 	•	Nd:YAG laser (pulsed)	1064 (near infrared)	Photodisruption
 Carbon Dioxide 10600 (far infrared) Photovaporization Femto second laser 1053 (near infrared) Photodisruption Krypton laser 670-531 (visible light) Photocoagulation Excimer laser 193 (far ultraviolet) Photoablation 	•	Nd:YAG, freq. doubled	532-nm	Photocoagulation
 Femto second laser Krypton laser Excimer laser 1053 (near infrared) Photodisruption Photocoagulation Photocoagulation Photocoagulation 	•	Diode laser	800-820-nm (infrared)	Photocoagulation
 Krypton laser Excimer laser 670-531 (visible light) Photocoagulation Photocoagulation Photocoagulation 	•	Carbon Dioxide	10600 (far infrared)	Photovaporization
Excimer laser 193 (far ultraviolet) Phtotablation	•	Femto second laser	1053 (near infrared)	Photodisruption
	•	Krypton laser	670-531 (visible light)	Photocoagulation
Ruby laser 694-nm (visible spectrum) Photoablation	•	Excimer laser	193 (far ultraviolet)	Phtotablation
	•	Ruby laser	694-nm (visible spectrum)	Photoablation
Helium-neon laser (the red wave length) An aiming beam	•	Helium-neon laser	(the red wave length)	An aiming beam

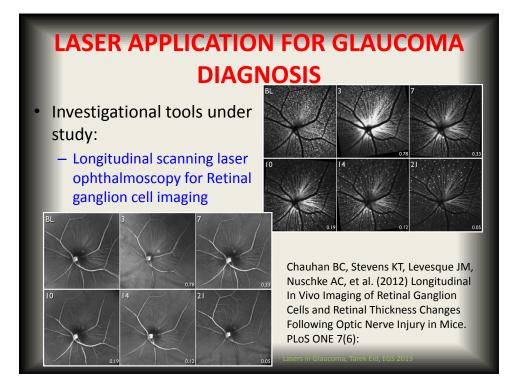


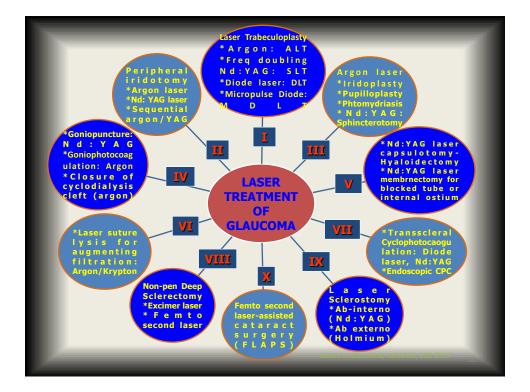


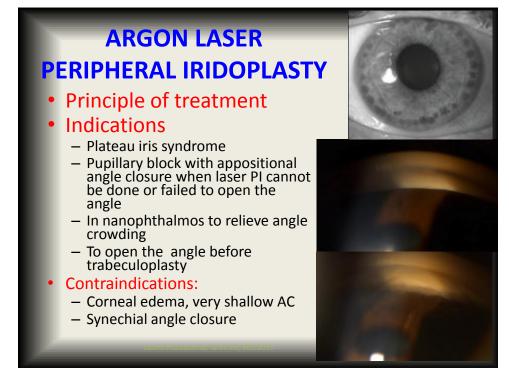











LASERS: THE SOFT POWER IN GLAUCOMA TREATMENT

- Except for ALT & SLT, all other lasers are substitutes for surgical intervention
- Being
 - Noninvasive,
 - Office procedures
 - Maximally tolerated
 - Least adverse effects
 - Targeting tissue of the main pathology
 - Average success rate
 - Average cost compared to drops or surgery
- make them preferred to surgery with regard to safety, efficacy, cost, and patient's acceptance

- SLT/ALT overcomes many of the adverse effects of medicinal therapy
 - Compliance to meds
 - Side effects of drug & preservative
 - Declining Persistence & tolerability to drops
 - Cost
 - Poor access to or non availability of drugs
 - Effect on future Sx
 - Quality of life & psychological stress

8

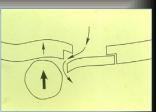
Indications for Laser Treatment for different types of glaucoma					
Type of Glaucoma	Laser Procedure				
• POAG, OH, PIGG, XFG	ALT, SLT, DLT, MDLT				
 PACG, PACS, Acute PACG, Plateau iris 	 PI, Laser iridoplasty, femto laser cat sx 				
2ry pupillary block glaucoma: NVG, Uveitic,	Multiple laser iridotomies				
Refractory glaucomas	Trans-scleral CPC, Endoscopic CPC				
Malignant glaucoma	YAG capsulotomy-hyaloidotomy				
Postoperative pressure spikes	Laser suture lysis, Goniopuncture				
Neovascular glaucoma	Goniophotocoagulation, Pan retinal photocoagulation				
Cyclodialysis cleft	 Argon laser treatment for closure of cleft 				
Blocked tube or sclerostomy	YAG laser membranectomy				
Surgical Rx of OAG	Laser sclerostomy, Excimer laser Deep Sclerectomy				

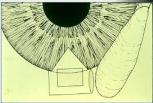
ARGON LASER IRIDOPLASTY

Technique:

- Laser setting: 300-500 μm spot size, 0.5 sec, 200-400 mW power
- Site of treatment: extreme iris periphery
- Number of burns: 20-40 over 360 degrees
- Treatment of 180 degrees may be advisable
- End point: visible brisk contraction of iris, no bubble or pigment release
- The flat surface of a contact lens is preferred to goniolens

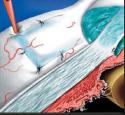
Complications:


 Iritis, endothelial edema, IOP rise retinal burn, pupil changes



LASER SUTURE LYSIS

- Postop pressure rise due to tight scleral flap
- Sutures are Nylon or Prolene
- Exclude other causes of high IOP
- Used for titration of filtration postoperatively
- Timing of LSL is very critical:
 - Not before one week & may extend for 1 months with antimetabolites
 - CTM is done to test flap dislodgement and amount of flow
 - The postop target pressure
 - Intensity of the healing/scarring process

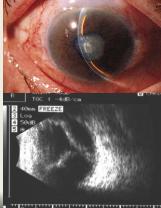


LASER SUTURE LYSIS

Technique

- Argon, Diode, or Krypton laser (if subconj. hemorrhage):
- 500 mW, 100 microns spot size, 0.1 sec
- Hoskins or Ritch lens
- Local anesthesia
- Suture compression by the lens with laser cutting under direct visualization
- Light pressure with lens may help to dislodge tight flap & increase flow
 - Tarek Eid. Laser suture lysis after guarded filtering surgery: safety and effectiveness. Delta Ophthalmological Society Journal, April 2003

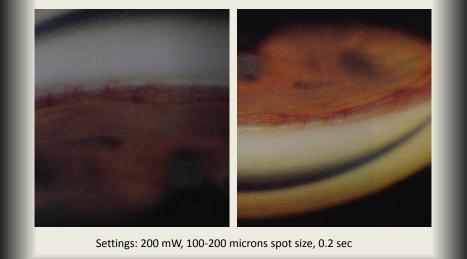
LASER SUTURE LYSIS


Precautions:

- Only one suture cut at a time
- IOP must be checked after suture cutting
- Slitlamp ex for AC, & Seidel test for leak

Complications

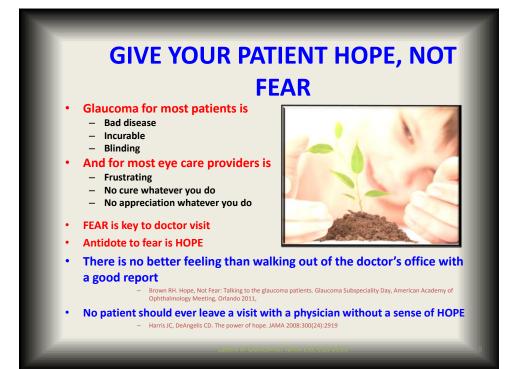
- Failure to locate or cut the suture
- Failure to increase flow after suture cutting
- Conjunctival buttonholes
- Excessive flow & hypotony-related complications: lost AC, choroidal effusion
- Malignant glaucoma



LASER MEMBRANECTOMY For blocked tube or internal ostium

 Kirti Singh, Tarek Eid, et al. Evaluation of Nd: YAG laser membranectomy in blocked tubes after glaucoma tube-shunt surgery. *American Journal of Ophthalmology*, 1997;124.

Argon laser Goniophotocoagulation for Open-angle Neovascular Glaucoma



"Health Literacy" & Laser Glaucoma Treatment

 Poor health literacy is associated with lower compliance, poor glaucoma understanding, and more missed appointments, with subsequent more visual field loss

> Juzych MS, et. Functional health literacy in patients with glaucoma in urban settings. Arch Ophthalmol 2008;126:718-724

- ABUSE of the word LASER by the physician & the patient
- The Underestimate & Overestimate impression
- The confusion with other laser applications in the eye (laser in retina, refractive sx, cat sx, plastic sx...etc)

