National Institute for

 Health Research
Mechanisms of primary angle closure

Winifred Nolan FRCOphth MD

Consultant Ophthalmologist
Glaucoma Service
Moorfields Eye Hospital, London

Pupil block

Steep iris curvature

High rise PAS

Ciliary body/Iris mechanism

Shallow peripheral and deep central anterior chamber

Lens mechanism

Shallow peripheral and shallow central ACD

Atypical - 42 yr old male

- Sudden onset reduction in distance vision
- RVA = 6/60, PH 6/9, LVA 6/36, PH 6/9
- N5 both eyes, 6/6 with -2.0D lens
- IOP R $=40 \mathrm{mmHg}, \mathrm{L}=34 \mathrm{mmHg}$
- Goniosopy - appositional closure both eyes

Choroidal effusions

Anatomical risk factors

Old

- Shallow/ crowded AC
- Hyperopic eyes
- Large lens
- Lens position
- Lens curvature

New

- Anterior chamberwidth, area and volume
- Iris - thickness, area, and curvature.
- Lens - lens vault

"Plateau Iris" configuration

- Deep Central AC
- Iris Profile: Flat
- Angular Iris Root
- Anterior Ciliary Body

Quantitative Iris parameters

- I-Curv,- line from peripheral to the most central points of iris pigment epithelium
- I-Area - cross-sectional area of iris (from spur to pupil).
- Iris thickness (IT)750 and IT2000 - iris thickness measured at 750 and $2000 \mu \mathrm{~m}$ from the scleral spur, respectively.
- Greater iris curvature, area and thickness

Automatic measurement of iris

Lens vault

- \uparrow lens vault increases the risk AC by 48 times compared to normal
- Bulk of lens located anterior to the plane
 of the angles plays an important role in the pathogenesis

Absolute lens position (ALP), Relative Lens Position (RLP) defined by Lowe $A L P=A C D+L T / 2(m m)$ $R L P=(A C D+L T / 2) / A L$ (no units)

Developing a qualitative grading scale

- 11 observers
- Mixed experience - glaucoma consultants, clinical scientists, research fellow, technicians
- 2 images given as start and end anchor points
- Each observer asked to rank 8 images for each characteristic under standardised conditions
- Strength of correlation analysed for each observer against each other
- Kendall's W coefficient of concordance for multiple observers

R. Siddiqui, D. Henson, V. Sung, P. Good, R. Stanton, W. Nolan

Anterior chamber depth

- Perfect concordance between 4 observers where $x=y$
- 2-point transpositions (7 and 8) and 3 point transposition $(4,5,6)$
- Highest variance at points 4,5 and 6

Key

* WN $\triangle \mathrm{RS} \nabla \mathrm{RSt} \Rightarrow \mathrm{MA} \forall \mathrm{JM} \square \mathrm{DH} \theta \mathrm{CF} \theta \mathrm{PG} \Rightarrow \mathrm{VS} \exists \mathrm{NB} \triangle \mathrm{YW}$

Pruned scales concordance

Characteristic	Number of points in scale	Pruned Kendall's Concordance	$\mathbf{1 0}$ Kendall's Concordance (W)
ACD	7	1.00	0.95
Iris Thickness	5	0.92	0.91
Iris Profile	5	$1-0.84$	0.84
Convexity	5	0.85	0.79
Angulation	4	$0.41-0.21$	0.41
Ciliary Body Size	5	$0.92-0.80$	0.90
Ciliary Body Position	4	$-1-1$	0.65

Mechanisms of angle closure - Do they matter?

Subclassification of Primary Angle Closure Using Anterior Segment Optical Coherence Tomography and Ultrasound Biomicroscopic Parameters

Ophthalmology 2017;124:1039-1047

Figure 1. Quantitative parameters mesured on the (A) anterior-segment optical coherence tomography (ASOCT) and (B) ultrasound biomicrocopic images. ACA = anterior chamber area; ACD = anterior microsoopic umages. $\mathrm{ACA}=$ anterior chamber area; $\mathrm{ACD}=$ anterior chamber depth; $\mathrm{ACW}=$ anteriot chamber with; $\mathrm{ACDS00}=$ angle peni dic IC I
 TCPD = mbectiry mex trabecular-cilury process angle; TCPD $=$ trabecularciliary proces distance

Table 2. Comparison of Anterior Segment Optical Coherence Tomography and Ulrasound Biomicroscopy Parameters Used in Cluster Analysis ($\mathrm{N}=73$)

Variables	Cluster A ($\mathrm{n}=48$)	Cluster B ($\mathrm{n}=25$)
AS-OCT parameters		
AOD500 (mm)	0.15 ± 0.10	0.17 ± 0.08
$\mathrm{LV}(\mathrm{mm})$	1.11 ± 0.35	1.22 ± 0.24
ACD (mm)	20 ± 03	2.0 ± 0.2
ACA (mm^{2})	14.4 ± 2.6	14.1 ± 2.1
ACW (mm)	11.8 ± 0.5	11.9 ± 0.4
IC (mm)	0.16 ± 0.08	0.11 ± 0.04
$1 \mathrm{~A}\left(\mathrm{~mm}^{2}\right)$	4.29 ± 1.04	4.04 ± 0.90
$\mathrm{TT}_{750}(\mathrm{~mm})$	0.43 ± 0.10	0.43 ± 0.08
$\mathrm{PD}(\mathrm{mm})$	3.4 ± 0.8	3.4 ± 0.8
UBM parameters		
TCA (degrees)	91.0 ± 13.4	63.7 ± 6.2
TCPD (mm)	0.99 ± 0.22	0.78 ± 0.16
CBT1 (mm)	0.45 ± 0.11	0.44 ± 0.09
CB orientation (neutral/anteriot), temporal	35/13	0/25
CB orientation (neutral/anterior), resal	35/13	0/25
Iris insertion (basi//middle/apical), temporal	37/92	12/11/2
Iris insertion (basal/middle/apical), rasal	36/10/2	149/2
Iris angulation (none/mildpronounced), temporal	35/13/0	5/14/6
Iris angulation (rone/mild/pronounced), rasal	36/12/0	5/14/6
Iris convexity (absent/mild/moderate/extreme), temporal	23/24/1	$22 \beta / 0$
Iris convexity (absent/mild/moderate/extreme), rasal	24/23/1	205/0
Cilury sulaus (absencelpresence), temporal	$9 / 39$	$24 / 1$
Ciliary sulcus (absence/presence), rasal	3/45	24/1
Iribo-angle contact (closurelopen), temporal	18/30	$20 / 5$
Irido-angle contact (closure/open), rasal	17/31	20/5

PAC/ PACG post iridotomy imaging

TCA = Trabecular-ciliary process angle TCPD = Trabecular-ciliary process distance

Table 3. Comparison of Other Clinical Characteristics between 2 Clusters Determined by Anterior Segment Optical Coherence Tomography and Ultrasound Biomicroscopy ($\mathrm{N}=73$)

Variables	Cluster A ($\mathrm{n}=48$)	Cluster B ($\mathrm{n}=25$)	P Value
Age (yrs)	65.1 ± 7.1	66.0 ± 8.4	0.449
Sex (men/women)	9/39	4/21	1.000
AXL (mm)	22.5 ± 0.4	22.8 ± 0.6	0.360
PAS ($\mathrm{No} / \leq 2 \mathrm{Q} />2 \mathrm{Q}$)	35/12/1	20/5/0	0.668
Pre-LPI IOP (mmHg)	18.8 ± 5.4	16.2 ± 4.5	0.037
Post-LPI IOP (mmHg)	13.9 ± 2.5	14.1 ± 2.1	0.647
IOP difference (mmHg) ${ }^{\text {\% }}$	5.0 ± 5.0	2.0 ± 4.2	0.014
IOP reduction (\%) ${ }^{\text {l }}$	22.3 ± 17.9	83 ± 19.5	0.003
No. of antighucoma medication	1.0 ± 1.2	1.0 ± 1.0	0.360
$\mathrm{AXL}=$ axial lenght; $\mathrm{IOP}=$ intraocular presure; $\mathrm{LPI}=$ hser peripheral iridotomy; $\mathrm{PAS}=$ peripheral anterior synechiae; $\mathrm{Q}=$ quadrant. *Pre-LPI IOP - post-LPI IOP (mmHg). ${ }^{1}$ IOP difference/pre-LPI IOP $\times 100$ (\%).			
P values with statistical significance (<0.05) appear in boldface.			

Ophthalmology 2017;124:1039-1047

Clincal case:

45yr old, symptomatic angle closure and \uparrow IOP, post iridotomy

Right Eye

Good response to Pilocarpine

Summary

- Pupil block, iris/ ciliary body and lens mechanisms
- Combination of all three often present
- Quantitative analysis using imaging can help classify by mechanism
- Qualitative analysis better for linear measures
- Determining mechanism can help predicting response to treatment but most cases with raised IOP respond to lens extraction

Thank you

