

Risk factors

ullet Diagnosis igstyle success: Secondary childhood glaucoma compared to PCG 1

1. Rice NSC. The surgical management of congenital glaucoma. Aust J Ophthalmol 197

Risk factors

- Diagnosis ↓ success: Secondary childhood glaucoma compared to PCG ¹

Rice NSC. The surgical management of congenital glaucoma. Aust J Ophtholmol 19
 Shaffar RN. Trans Am Onbtholmol Soc 1982

Failed Angle Surgery

Risk factors

- Diagnosis ↓ success: Secondary childhood glaucoma compared to PCG ¹
- Severity \downarrow success: more immature angle ^{3,4} and larger ocular dimensions ⁵

Rice NSC. The surgical management of congenital glaucoma. Aust J Ophthalmol 197

haffer RN. Trans Am Ophthalmol Soc 1982

Al-Hazmi A et al. British J Ophthalmol 2005
 Papadopoulos M et al. WGA Consensus Series S

Risk factors

- Diagnosis $\ensuremath{\rlap{$\downarrow$}}$ success: Secondary childhood glaucoma compared to PCG 1
- Age \downarrow success: neonatal and late onset PCG 2
- **Severity** \downarrow success: more immature angle ^{3,4} and larger ocular dimensions ⁵
- Geography ↓ success Middle East^{4,6} & India⁷ → preference CTT initial surgery Race

Failed Angle Surgery

Risk factors

- Diagnosis ↓ success: Secondary childhood glaucoma compared to PCG¹
- Age ↓ success: neonatal and late onset PCG ²
- **Severity** \downarrow success: more immature angle ^{3,4} and larger ocular dimensions ⁵
- **Geography** \downarrow success Middle East^{4,6} & India⁷ \Rightarrow preference CTT initial surgery Race
- Genetics 8
- Family History 9

Options

- Trabeculectomy
- Glaucoma drainage device (GDD) surgery
- (Cyclodestruction usually reserved if angle + other surgery failed)

Failed Angle Surgery

Options

- Trabeculectomy
- Glaucoma drainage device (GDD) surgery
- (Cyclodestruction usually reserved if angle + other surgery failed)
- No prospective, comparative studies
- Choice is determined by surgeon's experience, likelihood of follow up, geographic location & availability and cost of GDDs

Options

• Significant worldwide variation

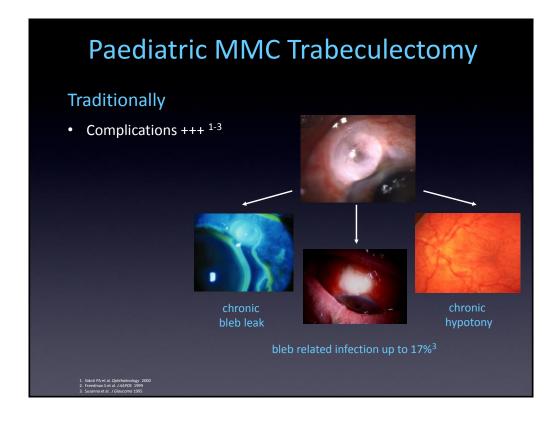
Failed Angle Surgery

Options

- Significant worldwide variation
- World Glaucoma Association Childhood Glaucoma Surgery survey¹

PCG <u>First line:</u> 69% angle surgery

Goniotomy 28%
Probe trabO 28%
360 trabO 13%
(CTT 13%)


Papadopoulos M et al. Glaucoma surgery in children. In Childhood Glaucoma. WGA Consensus Series – 9 201.

Options

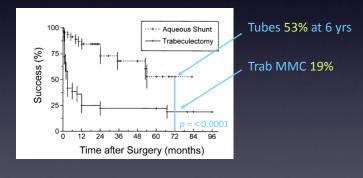
- Significant worldwide variation
- World Glaucoma Association Childhood Glaucoma Surgery survey¹

PCGFirst line:
Goniotomy69% angle surgeryFailed angle surgeryGoniotomy28%Repeat angle surgery51%Probe trabO28%Trabeculectomy22% (62%)360 trabO13%GDD surgery15%(CTT13%)Other11%

Papadopoulos M et al. Glaucoma surgery in children. In Childhood Glaucoma. WGA Consensus Series – 9 201:

Traditionally

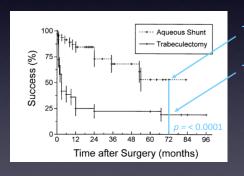
- Complications +++ 1-3
- Lower success in <u>infants</u> vs older children (30% vs 73%) ²⁻⁴


Sidoti PA et al. Ophthalmology 2000
 Freedman S et al. J AAPOS 1999

4. Al-Hazmi et al. Ophthalmology 1998

Paediatric MMC Trabeculectomy

Traditionally


- Complications +++ 1-3
- Lower success in infants vs older children (30% vs 73%) 2-4
- Lower success in infant MMC trabs vs tubes 5

Al-Hazmi et al. Ophthalmology 1998
 Beck AD et al. Ophthalmology 2003

Traditionally

- Complications +++ 1-3
- Lower success in infants vs older children (30% vs 73%) 2-4
- Lower success in <u>infant MMC trabs</u> vs tubes ⁵

Tubes 53% 46% ≥ 1 op for complication 35% tube repositioning

Trab MMC 19%

Sidoti PA et al. Ophthalmology 201
 Freedman S et al. J AAPOS 1999

Al-Hazmi et al. Ophthalmology 1998
 Beck AD et al. Ophthalmology 2003

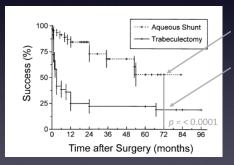
Paediatric GDDs

Pediatric Glaucoma Surgery

A Report by the American Academy of Ophthalmology

Teresa C. Chen, MD, ¹ Philip P. Chen, MD, ² Brian A. Francis, MD, ³ Anna K. Junk, MD, ⁴ Scott D. Smith, MD, MPH, ⁵ Kuldev Singh, MD, MPH, ⁶ Shan C. Lin, MD Ophthalmology 2014;121:2107-2115

- Consistently reported more commonly in children vs adults
 - tube malposition, migration (requiring surgery 33% cases)
 - tube erosion (up to 11%)
 - endophthalmitis (up to 10%)
 - "Noteworthy that many children require IOP lowering meds after tube surgery."



GDD tube & plate erosion

Corneal decompensation following GDD

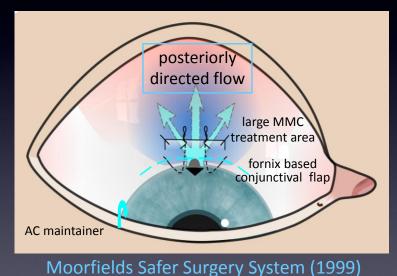
Traditionally

- Complications +++ 1-3
- Lower success in infants vs older children (30% vs 73%) 2-4
- Lower success in <u>infant MMC trabs</u> vs tubes ⁵

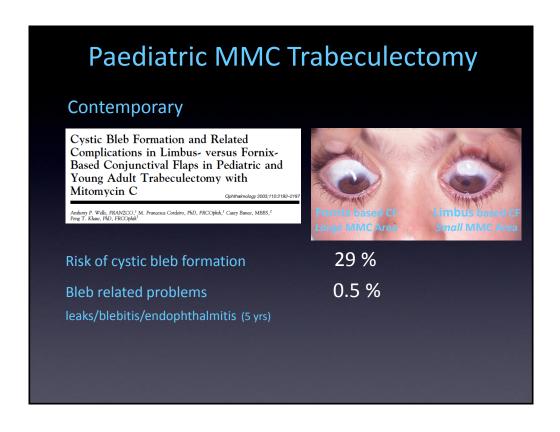
Tubes 53% 46% ≥ 1 op for complication 35% tube repositioning

Trab MMC 19%

BUT, overall paediatric Trab MMC vs Tubes ⁶


- lower mean IOP
- less dependent on meds for IOP control

Sidoti PA et al. Ophtholmology 201
 Freedman S et al. J AAPOS 1999
 Susanna et al. J Clausema 1005


Beck AD et al. Ophthalmology 2003
 Beck AD et al. Am J Ophthalmol 1991

Paediatric MMC Trabeculectomy

Contemporary

Paediatric MMC Trabeculectomy Contemporary | posteriorly | directed flow | | large flap (5x4mm) | large MMC | | treatment area | fornix based | | conjunctival flap | small sclerostomy 500µm | | AC maintainer | Moorfields Safer Surgery System (1999)

Contemporary

Cystic Bleb Formation and Related Complications in Limbus- versus Fornix-Based Conjunctival Flaps in Pediatric and Young Adult Trabeculectomy with Mitomycin C

Ophthalmology 2003;110:2192-2197

Anthony P. Wells, FRANZCO, M. Francesca Cordeiro, PhD, FRCOphth, Catey Bunce, MBBS, Peng T. Khaw, PhD, FRCOphth

Risk of cystic bleb formation

Bleb related problems

leaks/blebitis/endophthalmitis (5 yrs)

29 %

90 %

0.5 %

20 %

Paediatric MMC Trabeculectomy in Infants

Long-Term Outcomes of Trabeculectomy
Augmented with Mitomycin C Undertaken
within the First 2 Years of Life

Hari Jayaram, PhD, FRCSEd.^{1,2,3} Richard Scaum, FRCOphth.¹ Francisco Pooley, MD, ^{1,4} Mark Chiang, MBBS, FRANZCO, ^{1,2,4} Zaey Bunce, MSc, DSc, ^{1,5} Nicholas G. Sprouthidis, PhD, FRCOphth, ^{1,2,7,8} Peng Tee Khaue, PhD, FRCOphth, ^{1,2,7,8} Membragadopoulos, MBBS, FRCOphth, ^{1,2,7,8}

- Retrospective, single surgeon (MP)
- Moorfields SSS technique
- MMC 0.1-0.5mg/ml (3 mins) subconj and under scleral flap (Sno*strip)*

1. Jayaram H et al. Long term outcomes of trabeculectomy augmented with MMC undertaken within the first 2 yrs of life. Ophthalmology 201

Paediatric MMC Trabeculectomy in Infants

AMERICAN ACADEMY
OF OPHTHALMOLOGY
The Eye M.D. Association

Long-Term Outcomes of Trabeculectomy Augmented with Mitomycin C Undertaken within the First 2 Years of Life

Hari Jayaram, PhD, FRCSE4, ^{1,2,3} Richard Seauen, FRCOphth, ¹ Francisco Pooley, MD, ^{1,4} Mark Chiang, MBBS, FRANZCO, ^{1,2,2} Carey Bunce, MSc, DSc, ^{1,5} Nicholas G. Strouthidis, PhD, FRCOphth, ^{1,2,7,8} Peng Tee Khaue, PhD, FRCOphth, ^{1,2,7,8} Metholas G. Strouthidis, PhD, ^{1,2,7,8} Methola

- Retrospective, single surgeon (MP)
- Moorfields SSS technique
- MMC 0.1-0.5mg/ml (3 mins) subconj and under scleral flap (Sno*strip)*
- EUA at 1,3 and (6) weeks postop (5FU + Betnesol injections as necessary)
- Dexamethasone 4-8 x/day, Maxitrol ointment weaned over 3-4 months

Jayaram H et al. Long term outcomes of trabeculectomy augmented with MMC undertaken within the first 2 yrs of life. Ophthalmology 201:

Paediatric MMC Trabeculectomy in Infants

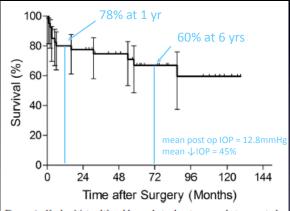


Figure 1. Kaplan-Meier life table analysis showing cumulative surgical success after mitomycin C—augmented trabeculectomy in infants. Plotted is

40 <u>phakic</u> eyes

80% PCG failed goniotomy

Failed cases

all uncontrolled IOP

Successful cases

96% off meds

44% 6/12 or better

1/40 cystic bleb

1. Jayaram H et al. Long term outcomes of trabeculectomy augmented with MMC undertaken within the first 2 yrs of life. Ophthalmology 201

Paediatric MMC Trabeculectomy in Infants

Complications

	Jayaram et al (MEH) ¹	Beck et al ²
Choroidal effusions	4 / 40 (10%)*	4 / 24 (16.7%)
Chronic hypotony	0/40	1 / 24 (4%)
Late bleb leak	0 / 40	3 / 24 (12.5%)
Bleb related infection	1 / 40 (2.5%) blebitis	2 / 24 (8%) endophthalmitis
Corneal decompensation	0 / 40	2 / 24 (8%)
Cataract	3/26 (11.5%)	2 / 24 (8%)

^{*} All 4 cases of effusions had successful outcome (3 AC viscoelastic inj)

Jayaram H et al. Long term outcomes of trabeculectomy augmented with MMC undertaken within the first 2 yrs of life. Ophthalmology 2015
 Beck AD. Freedman S. Kammer J. Jin J. Aqueous shunt devices compared to Trabeculectomy with MMC for children in 1st two years of life. Am J Ophthalmol 2003

Failed Angle Surgery: Trabeculectomy

Conclusions

- Contemporary Paediatric Trabeculectomy technique
 - Should be considered regardless of age in phakic patients
 - Long term success with low target IOPs possible
 - Good visual outcomes
 - ↓ Complications including endophthalmitis
 - ↓ Medications
 - Cheap compared to tube surgery

